EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS.
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
1 / G* = = [ ] ω , , / T] / c [ [x,t] ] [-1] =
G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =operador cujo observável corresponde à ENERGIA TOTAL DO SIS ] é um TEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o sistema GENERALIZADO GRACELI.
COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI.
Em termodinâmica, a relação de Gibbs-Duhem descreve as variações do potencial químico associadas as diferentes componentes de um sistema. Ela é consequência direta da relação de Euler para funções homogêneas e se escreve para um sistema de componentes[1]:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
sendo o número de moles da componente i, o potencial químico da componente i, a entropia do sistema, a temperatura, o volume e a pressão.
A distribuição de Maxwell-Boltzmann é uma distribuição de probabilidade com aplicações em física e química.
No início da segunda metade do século XIX (1859) J. C. Maxwell divulgou estudos sobre como se distribuíam os módulos das velocidades das moléculas de um gás em equilíbrio térmico. Posteriormente, esses estudos foram solidificados por L. Boltzmann.
Dedução
A distribuição de velocidades moleculares de um gás pode ser medida diretamente com aparato adequado. Os valores medidos de rapidez são plotados para dois valores de temperatura. A quantidade é chamada função de distribuição de velocidades de Maxwell-Boltzmann. Em um gás com N moléculas, o número de moléculas com modulo de velocidade entre e é , dado por:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
A função de distribuição de velocidades de Maxwell-Boltzmann pode ser deduzida usando-se a mecânica estatística; a temperatura é a variável que determina a mudança para uma certa substância e k é a constante de Boltzmann (definida pela razão entre a constante dos gases perfeitos e a constante de Avogadro que resulta em ). O resultado da função é:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Assim, a velocidade média das moléculas a uma certa temperatura é dada por , a velocidade mais provável de ser encontrada é dada por e a velocidade quadrática média é dada por .[1] Dessa forma, é possível esboçar um gráfico semelhante ao da imagem ao lado, no qual fica mais fácil de visualizar a distribuição.
A distribuição de velocidades de Maxwell-Boltzmann também pode ser escrita como uma distribuição de energias cinéticas de translação.
A Lei de Stefan-Boltzmann (mais conhecida como Lei de Stefan) estabelece que a energia total radiada por unidade de área superficial de um corpo negro na unidade de tempo (radiação do corpo negro), (ou a densidade de fluxo energético (fluxo radiante) ou potencia emissora), j* é diretamente proporcional à quarta potência da sua temperatura termodinâmica T:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
A constante de proporcionalidade (não é uma constante fundamental) é chamada constante de Stefan-Boltzmann ou constante de Stefan σ. A lei foi descoberta de jeito experimental por Jožef Stefan (1835-1893) no ano 1879 e derivada de jeito teórico no marco da termodinâmica por Ludwig Boltzmann (1844-1906) em 1884. Boltzmann supôs uma máquina térmica ideal com luz como substância de trabalho semelhante a um gás. Esta lei é a única lei da natureza que leva o nome de um físico esloveno. Hoje pode-se derivar a lei da Lei de Planck sobre a radiação de um corpo negro:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
e é válida só para objetos de cor negra ideal, os perfeitos radiantes, chamados corpos negros. Stefan publicou esta lei o 20 de março no artigo Über die Beziehung zwischen der Wärmestrahlung und der Temperatur (Das relações entre radiação térmica e temperatura) nos Boletins das sessões da Academia das Ciências de Viena.
Em física a Distribuição de Boltzmann permite calcular a função distribuição para um número fracionário de partículas Ni / N ocupando um conjunto de estados i cada um dos quais tem energia Ei:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde é a constante de Boltzmann, T é a temperatura (admitida como sendo uma quantidade precisamente bem definida), é a degeneração, ou número de estados tendo energia , N é o total do número de partículas:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
e Z(T) é chamada função partição, a qual pode ser tratada como sendo igual a
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Alternativamente, para um sistema único em uma temperatura bem definida, ela dá a probabilidade deste sistema em seu estado específico. A distribuição de Boltzmann aplica-se somente à partículas em uma suficiente alta temperatura e baixa densidade nas quais efeitos quânticos possam ser ignorados, e cujas partículas obedeçam a estatística de Maxwell–Boltzmann. (Veja este artigo para uma derivação da distribuição de Boltzmann.)
A distribuição de Boltzmann é frequentemente expressa em termos de β = 1/kT aonde β refere-se ao beta termodinâmico. O termo ou , o qual dá a relativa probabilidade (não normalizada) de um estado, é chamada factor de Boltzmann e aparece frequentemente no estudo da física e química.
Quando a energia é simplesmente a energia cinética da partícula
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
então a distribuição corretamente dá a distribuição de Maxwell-Boltzmann das velocidades das moléculas do gás, previamente previstas por Maxwell em 1859. A distribuição de Boltzmann é, entretanto, muito mais geral. Por exemplo, ela prediz a variação da densidade de partículas num campo gravitacional em relação à altitude, se . De fato a distribuição aplica-se sempre que as considerações quânticas possam ser ignoradas.
Em alguns casos, uma aproximação contínua pode ser usada. Se há g(E) dE estados com energia E a E + dE, quando a distribuição de Boltzmann prediz uma probabilidade de distribuição para a energia:
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
Quando g(E) é chamado densidade de estado se o espectro de energia é contínuo.
Partículas clássicas com esta distribuição de energia são ditas obedientes à estatística de Maxwell–Boltzmann.
No limite clássico, i.e. em grandes volumes de E/kT ou às menores densidades de estados — quando funções de onda de partículas praticamente não se sobrepõe, tanto a distribuição Bose–Einstein ou a Fermi–Dirac tornam-se a distribuição de Boltzmann.
Desenvolvida originalmente por Ludwig Boltzmann, esta equação é uma ferramenta poderosa para a análise dos fenômenos de transporte envolvendo gradientes de temperatura e densidade. Essa equação é muito importante na física estatística e amplamente aplicada no estudo de sistemas fora do equilíbrio termodinâmico. Geralmente, a equação de transporte de Boltzmann é utilizada no estudo do transporte de calor e carga, fornecendo informações sobre propriedades de transporte como condutividade elétrica e térmica, viscosidade, etc. Para um sistema com função distribuição de partículas sujeita a uma força externa a equação de Boltzmann é dada por
/
G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde o termo da direita descreve o efeito das colisões entre as partículas do sistema.
Comentários
Postar um comentário